A 3-level autonomous mobile robot navigation system designed by using reasoning/search approaches
نویسندگان
چکیده
This paper describes how soft computing methodologies such as fuzzy logic, genetic algorithms and the Dempster–Shafer theory of evidence can be applied in a mobile robot navigation system. The navigation system that is considered has three navigation subsystems. The lower-level subsystem deals with the control of linear and angular volocities using a multivariable PI controller described with a full matrix. The position control of the mobile robot is at a medium level and is nonlinear. The nonlinear control design is implemented by a backstepping algorithm whose parameters are adjusted by a genetic algorithm. We propose a new extension of the controller mentioned, in order to rapidly decrease the control torques needed to achieve the desired position and orientation of the mobile robot. The high-level subsystem uses fuzzy logic and the Dempster–Shafer evidence theory to design a fusion of sensor data, map building, and path planning tasks. The fuzzy/evidence navigation based on the building of a local map, represented as an occupancy grid, with the time update is proven to be suitable for real-time applications. The path planning algorithm is based on a modified potential field method. In this algorithm, the fuzzy rules for selecting the relevant obstacles for robot motion are introduced. Also, suitable steps are taken to pull the robot out of the local minima. Particular attention is paid to detection of the robot’s trapped state and its avoidance. One of the main issues in this paper is to reduce the complexity of planning algorithms and minimize the cost of the search. The performance of the proposed system is investigated using a dynamic model of a mobile robot. Simulation results show a good quality of position tracking capabilities and obstacle avoidance behavior of the mobile robot. c © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملNavigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملNavigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 54 شماره
صفحات -
تاریخ انتشار 2006